M1.(a) (i) absorbs (certain frequencies of) (white) light / photons not absorbs white / u.v. light
d electrons excited / promoted or $\underline{d}$ electrons move between levels / orbitals $d$ electrons can be implied elsewhere in answer
the colour observed is the light not absorbed / light reflected / light transmitted allow blue light transmitted penalise emission of light in M3
(ii) $\Delta E$ is the energy gained by the (excited) electrons (of $\mathrm{Cu}^{2+}$ ) allow:

- energy difference between orbitals / sub-shells
- energy of photon / light absorbed
- change in energy of the electrons energy lost by excited electrons
- energy of photon / light emitted
h (Planck's) constant
$v$ frequency of light (absorbed by $\mathrm{Cu}^{2+}(\mathrm{aq})$ )
do not allow wavelength
If energy lost / photon lost / light emitted in M1 do not penalised light emitted
(iii) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
note that $\left[\mathrm{CuCl}_{4}^{-7}\right]^{-2}$ is incorrect
penalise charges shown separately on the ligand and overall penalise HCl
tetrahedral
$\mathrm{Cl}^{-} / \mathrm{Cl} /$ chlorine too big (to fit more than 4 round Cu )
allow
water smaller than $\mathrm{Cl}^{-}$
(b)

allow:
- ion drawn with any bond angles
- ion in square brackets with overall / 2- charge shown outside the brackets
- ion with delocalised $\mathrm{O}=\mathrm{C}-\mathrm{O}$ bonds in carboxylate group(s)
lone pair(s) on $\mathrm{O}^{-} / \mathrm{O}$
allow position of lone pair(s) shown on O in the diagram even if the diagram is incorrect.
(c) (i) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
product correct
equation balanced

6
note can only score M3 and M4 if M1 awarded or if complex in equation has 2 waters and 2 ethanedioates
octahedral
If this condition is satisfied the complex can have the wrong charge(s) to allow access to M3 and M4 but not M1
(ii)

ignore charges
diagram must show both ethanedioates with correct bonding ignore water
$90^{\circ}$
allow $180^{\circ}$
mark bond angle independently but penalise if angle incorrectly labelled / indicated on diagram

M2.(a) (ligand) substitution
Allow 'ligand exchange'.
(b) To displace the equilibrium to the right

To ensure reaction goes to completion.

To improve the yield
Allow 'to replace all chlorines'.
(c) (i) $\mathrm{K}_{2} \mathrm{PtCl}_{4}+4 \mathrm{KI} \rightarrow \mathrm{K}_{2} \mathrm{Ptl}_{4}+4 \mathrm{KCl}$

Allow correct ionic equations $\mathrm{PtCl}_{4}^{2-}+41^{-} \rightarrow \mathrm{Ptl}_{4}^{2-}+4 \mathrm{Cl}^{-}$
Allow multiples and fractions.
(ii) $=(780.9) \times 100 /(415.3+664)$

Working must be clearly shown.
Allow one mark for correct relationship even if $M_{r}$ values are incorrect eg using values from ionic equation.
(d) (i) $\mathrm{Ag}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}$

Ignore state symbols even if incorrect.
This equation only.
(ii) Stops the reverse reaction / equilibrium displaced to the right
(e) Number of steps in the process

Allow 'equilibrium may lie on the reactant side' / side reactions / isomer formation.

Losses at each stage of the synthesis
Equilibrium losses or practical losses or yield not 100\% for each step.
(f) Minimum amount of hot solvent

Accept 'small' for minimum.
Accept water.

Cool / crystallise

Filter
(g) (i) Small amounts are more likely to kill cancer cells rather than the patient
(ii) Wear gloves / wash hands after use Ignore masks.
Apply the list principle if more than one answer.
(ii) $\quad($ Mol EDTA $=(6.45 / 1000) \times 0.015=) 9.68 \times 10^{-5} \mathrm{~mol} \mathrm{Cu}(I I)$

Conc. $\mathrm{Cu}(\mathrm{II})=\left(\left(9.68 \times 10^{-5}\right) / 0.025=\right) 0.00387 \mathrm{~mol} \mathrm{dm}^{-3}$
Correct answer without working gains M2 only.
(b) Samples may not be consistent throughout the river OR
Concentration may vary over time
Ignore comments on technique.
(c) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$

Accept name eg diamminesilver(I) ion.
aldehyde

## Allow CHO.

